MEREGIO

The Minimum Emission Region Project (MEREGIO) aims at developing a test region in South-Western Germany that is bound to reduce the carbon footprint as much as possible. To achieve this goal energy suppliers as well as energy consumers within this region will be equipped with intelligent information and communication technology (smart devices) that facilitate efficient energy generation and consumption. Furthermore, variable energy price tariffs will be introduced that should further incentivize a precautious and sustainable consumption of valuable energy resources. Besides the technical part of the project a "minimum emission" certification program will be developed that ultimately helps regions display their energy saving efforts with a high public visibility.

This project is lead by EnBW Energie Baden-Württemberg AG, at Universität Karlsruhe members from AIFB, IIP, IISM, ITM and ZAR are involved.

Within the next four years the Federal Ministry of Economics and Technology will provide an overall funding of approx. EUR 10 Mio for the MEREGIO project in order to support the development of modern information and communication infrastructure (ICT) that enables a more ecologic, economic, and sustainable energy infrastructure.

Prokject consortium:

  • EnBW Energie Baden-Württemberg AG (Project Leader)
  • ABB AG
  • IBM Deutschland GmbH
  • SAP AG
  • Systemplan GmbH
  • Universität Karlsruhe (TH)

Contact Persons at IISM:

News

The official MeRegio website is online. (18.08.)

The official MeRegio Website is available online. The website provides interesting information about the MeRegio (Minimum Emission Region) project. In this project a test region in Baden-Württemberg is equiped with smart grid appliances and components on the supply, and similarly on the demand side. This will enable actors in this region to generate and use electriticy more efficiently, as the ICT-infrastructure provides the necessary information for a more seamless and efficient operation of the grid and works as an enabler for a thorough integration of renewable energy resources.

Two major contribtutions within MeRegio are the design and implementation of a regional energy market and a "Minimum Emission Certificate" program. The first concept can contribute to more efficient energy allocation and the second is able to set incentives to reduce energy consumption and related carbon emissions.

Here you can find more information:

  more
meregio_sRGB.jpg
 

IEEE PowerTech 2009 Best Paper award (16.07.)

Klaus-Henning Ahlert has won the best paper award at the IEEE PowerTech conference 2009 in Bucharest.  more
 

E-Energy Conference in Berlin (02.02.)

On January 22. and 23. the Münchner Kreis organized the first E-Energy Conference in Berlin. Prof. Dr. Christof Weinhardt was invited to deliver a talk on IT- and Service Innovation for Future Energy Markets. Additionally the E-Energy Roadmap Internet der Energie - IKT für Energiemärkte der Zukunft was initially presented to the audience. Prof. Dr. Christof Weinhardt, and Carsten Block from IISM as well as Dr. Clemens van Dinther from FZI are among the authors of this study.  more
bdi.jpg
 

Prof. Dr. Christof Weinhardt guest at SAP TV (28.07.)

On Wednesday, July 23rd, Christof Weinhardt was invited speaker at SAP TV. Together with experts of SAP and EnBW, he discussed current developments in the energy sector, the future importance of energy markets and the design of incentive mechanisms to handle energy in a sensible way. In this context, the e-Energy project MEREGIO was presented. This project is due to start in autumn 2008; KIT being one of the consortial partners. You may watch the broadcast on Livestream oder zum Download (Windows Media Format)more
snapshout_sap.png
Publications

Monographs/Books

1
Ahlert, K.-H. 2010
Economics of Distributed Storage Systems – An economic analysis of arbitrage-maximizing storage systems at the end consumer level. Karlsruhe Institute of Technology (KIT).
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000016568
@Phdthesis{CitationKey,
author = {Ahlert, Klaus-Henning},
title = {{Economics of Distributed Storage Systems -- An economic analysis of
arbitrage-maximizing storage systems at the end consumer level}},
school = {Karlsruhe Institute of Technology (KIT)},
year = {2010},
url = {http://digbib.ubka.uni-karlsruhe.de/volltexte/1000016568},
key = {Ahlert2010Economics},
abstract = {Increasing the shares of Renewable Energy Sources (RES) and
Distributed Energy Resources (DER) is one of the most important levers in many
countries to cope with the environmental, political, and economic challenges
of future energy supply. The underlying research question of this thesis is
whether Distributed Storage Systems (DSS) at the end consumer level can
economically foster the integration of intermittent and non-dispatchable resources
by providing demand-side flexibility.



The analyses reveal a substantial integration potential of such systems, if
hourly flexible electricity prices are provided to end consumers and capacity
costs for distributed storage devices decrease to 200-400~EUR/kWh. The combination
of results from three different models shows the economics of DSS under price
and load forecast uncertainty as well as under the condition of load-variable
market prices. The models investigate the influence of technical and economic
parameters within and around DSS.



The first model (Part I) analyzes the economics of a single storage system on
the grid. In contrast to other papers dealing with the economic evaluation of
storage systems and the solution of storage scheduling problems, the presented
approach varies in three dimensions: (i) Instead of centralized (large) storage
systems on the Generation or Transmission level, the focus is on DSS. (ii) The
objective function is a purely economic storage application aiming at arbitrage
accommodation, whereas the existing literature mostly analyzed the economic
impact of partly or primarily technical storage applications, like load leveling,
peak shaving, or frequency control. (iii) The presented model accurately links
technical characteristics of a storage device with economic parameters of the
system and its environment, which most of the existing storage models in
literature only rudimentary do.



Part II presents a simulation model that analyzes the performance of DSS under
uncertainty. The described simulation model contributes three new aspects to
scientific literature in this area: (i) In comparison with all other papers
analyzing the economic impact of forecast errors, the presented methodology
provides a more generic and extensive functionality of forecast error simulation.
(ii) Few of the existing storage models considered forecast uncertainties into
their analyses, none does so for DSS. (iii) The third major contribution to
literature on storage models is a benchmark of optimal vs. heuristic scheduling
algorithms.



The third model (Part III) takes a market-wide perspective and models the impact
that the aggregated charge and discharge volumes of multiple DSS have on the
electricity price. This work complements the existing literature on DR programs
by evaluating such programs when based on DSS at the end consumer level. It
continues the thought of implementing automated communication and control devices
on the consumer side. Such devices help to let demand automatically follow supply
to better integrate intermittent and non-dispatchable resources and to reduce
critical peak loads without requiring the interaction and the behavioral change
of the consumer.}}

					

Refereed Journal Articles

1
Gottwalt, S.; Ketter, W.; Block, C.; Collins, J.; Weinhardt, C. 2011
Demand side management – A simulation of household behavior under variable prices. Energy Policy 39(12). 8163–8174.
doi:10.1016/j.enpol.2011.10.016
@Article{CitationKey,
author = {Sebastian Gottwalt and Wolfgang Ketter and Carsten Block and John
Collins and Christof Weinhardt},
title = {{Demand side management -- A simulation of household behavior under
variable prices}},
journal = {Energy Policy},
year = {2011},
volume = {39},
pages = {8163--8174},
number = {12},
doi = {10.1016/j.enpol.2011.10.016},
abstract = {Within the next years, consumer households will be increasingly
equipped with smart metering and intelligent appliances. These technologies
are the basis for households to better monitor electricity consumption and to
actively control loads in private homes. Demand side management (DSM) can be
adopted to private households. We present a simulation model that generates
household load profiles under flat tariffs and simulates changes in these profiles
when households are equipped with smart appliances and face time-based electricity
prices.



We investigate the impact of smart appliances and variable prices on electricity
bills of a household. We show that for households the savings from equipping
them with smart appliances are moderate compared to the required investment.
This finding is quite robust with respect to variation of tariff price spreads
and to different types of appliance utilization patterns.



Finally, our results indicate that electric utilities may face new demand peaks
when day-ahead hourly prices are applied. However, a considerable amount of
residential load is available for shifting, which is interesting for the utilities
to balance demand and supply.}}

					
 
2
Hirsch, C.; Hillemacher, L.; Block, C.; Schuller, A.; Moest, D. 2010
Simulations in the Smart Grid Field Study MeRegio Simulationen im MeRegio Smart Grid Feldtest. it - Information Technology 52(2). 100–106.
doi:10.1524/itit.2010.0577
http://www.oldenbourg-link.com/doi/abs/10.1524/itit.2010.0577
@Article{CitationKey,
author = {Hirsch, Christian and Hillemacher, Lutz and Block, Carsten and Schuller,
Alexander and Moest, Dominik},
title = {{Simulations in the Smart Grid Field Study MeRegio

Simulationen im MeRegio Smart Grid Feldtest}},
journal = {it - Information Technology},
year = {2010},
volume = {52},
pages = {100-106},
number = {2},
month = {03},
doi = {10.1524/itit.2010.0577},
url = {http://www.oldenbourg-link.com/doi/abs/10.1524/itit.2010.0577},
abstract = {The aim of the research project MeRegio is to meet the claim for
more efficient decentralized energy systems by integrating advanced information
and communication technologies (ICT) into all stages of the energy supply chain.
Several marketplaces — in particular for power and for ancillary services —
which are coupled to the technical energy infrastructure through a powerful
and lawful ICT infrastructure should serve as a basis for an efficient and
transparent coordination of energy supply, energy demand, and services. The
developed concepts will be both validated by simulations and tested within a
model region.}}

					

Refereed Papers in Proceedings and Collections

1
Joetten, G.; Weidlich, A.; Filipova-Neumann, L.; Schuller, A. 2011
Assesment of Flexible Demand Response Business Cases in the Smart Grid. Proceedings of the 21st International Conference on Electricity Distribution (CIRED).
Available at: click here
@Inproceedings{CitationKey,
author = {Joetten, Gerrit and Weidlich, Anke and Filipova-Neumann, Lilia and
Schuller, Alexander},
title = {{Assesment of Flexible Demand Response Business Cases in the Smart
Grid}},
booktitle = {Proceedings of the 21st International Conference on Electricity
Distribution (CIRED)},
year = {2011},
url =
{http://www.cired.net/publications/cired2011/part1/papers/CIRED2011_0937_final.pdf}}

					
 
2
Schuller, A. 2010
Marktintegration der Elektromobilität: Ein agentenbasierter Ansatz für das Smart Grid. in: Appelrath, H. J.; Nieße, A.; Sonnenschein, M.; Troeschel, M. (eds.), Energieinformatik 2010. Vol. 1, no. 1. Offis - Institut für Informatik. ISBN:978-3-00-032747-6.
Available at: click here
@Inproceedings{CitationKey,
author = {Schuller, Alexander},
title = {{Marktintegration der Elektromobilit\"{a}t: Ein

agentenbasierter Ansatz f\"{u}r das Smart Grid}},
booktitle = {Energieinformatik 2010},
year = {2010},
editor = {Appelrath,H.-J\"{u}rgen and Nie\sse,Astrid and Sonnenschein,Michael
and Troeschel, Martin},
volume = {1},
number = {1},
organization = {Offis - Institut f\"{u}r Informatik},
note = {ISBN:978-3-00-032747-6},
url =
{http://www.offis.de/fileadmin/Redakteur_fue_files/Energie/EM/Workshop_Energieinformatik/2010/Schuller__A._Marktintegration_der_Elektromobilitaet.pdf},
abstract = {Dieser Beitrag geht auf die M\"{o}glichkeiten zur Marktintegration
von Elektrofahrzeugen

im Rahmen einer kompetitiven Agentensimulation ein. Es werden die

Entscheidungsprobleme eines EV-Brokers welcher eine Flotte von E-Fahrzeugen
\"{u}ber

Preissignale in ihrem Ladeverhalten beeinflussen kann, im Rahmen eines regionalen

Handelsszenarios beschrieben. Die notwendigen Kompetenzen bez\"{u}glich
Tarifgestaltung

und Optimierungsverfahren werden angesprochen und es wird auf weiterf\"{u}hrende

Arbeiten im Rahmen der Trading-Agent-Competition (TAC) Energy verwiesen.}}

					
 
3
Block, C.; Collins, J.; Gottwalt, S.; Ketter, W.; Weinhardt, C. 2010, forthcoming
Modeling household energy consumption under fixed and variable pricing. Workshop on Information Systems and Technology. (St. Louis, Missouri, USA).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Gottwalt, Sebastian and Ketter,
Wolfgang and Weinhardt, Christof},
title = {{Modeling household energy consumption under fixed and variable
pricing}},
booktitle = {Workshop on Information Systems and Technology},
year = {2010},
address = {St. Louis, Missouri, USA},
month = {December}}

					
 
4
Block, C.; Collins, J.; Ketter, W. 2010, forthcoming
Agent-based competitive simulation: Exploring future retail energy markets. Proceedings of the 12th International Conference on Electronic Commerce (ICEC). (Hawaii, USA).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolf},
title = {{Agent-based competitive simulation: Exploring future retail energy
markets}},
booktitle = {Proceedings of the 12th International Conference on Electronic
Commerce (ICEC)},
year = {2010},
address = {Hawaii, USA},
month = {August},
abstract = {Future sustainable energy systems will need efficient, clean,

low-cost, renewable energy sources, as well as market structures that motivate

sustainable behaviors on the part of households and businesses. "Smart grid"

components can help consumers manage their consumption only if pricing

policies are in place that motivate consumers to install and use these new

tools in ways that maximize utilization of renewable energy sources while

minimizing dependence on non-renewable energy. Serious market breakdowns, such

as the California energy crisis in 2000, have made policy makers wary of

setting up new retail energy markets. We present the design of an open,

competitive simulation approach that will produce robust research results on

the structure and operation of retail power markets as well as on automating

market interaction by means of competitively tested and benchmarked electronic

agents. These results will yield policy guidance that can significantly reduce

the risk of instituting competitive energy markets at the retail level,

thereby applying economic motivation to the problem of adjusting our energy

production and consumption patterns to the requirements of a sustainable

future.}}

					
 
5
Block, C.; Collins, J.; Ketter, W. 2010, forthcoming
Exploring retail energy markets through competitive simulation. in: Larson, K. (ed.), ACM EC 2010 Workshop on Trading Agent Design and Analysis (TADA). (Harvard University).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolfgang},
title = {{Exploring retail energy markets through competitive simulation}},
booktitle = {ACM EC 2010 Workshop on Trading Agent Design and Analysis (TADA)},
year = {2010},
address = {Harvard University},
editor = {Kate Larson},
month = {June},
abstract = {Future sustainable energy systems will need efficient, clean,

low-cost, renewable energy sources, as well as market structures that motivate

sustainable behaviors on the part of households and businesses. "Smart grid"

components can help consumers manage their consumption only if pricing

policies are in place that motivate consumers to install and use these new

tools in ways that maximize utilization of renewable energy sources while

minimizing dependence on non-renewable energy. Serious market breakdowns, such

as the California energy crisis in 2000, have made policy makers wary of

setting up new retail energy markets. We present the design of an open,

competitive simulation approach that will produce robust research results on

the structure and operation of retail power markets as well as on automating

market interaction by means of competitively tested and benchmarked 

agents. These results will yield policy guidance that can significantly reduce

the risk of instituting competitive energy markets at the retail level,

thereby applying economic motivation to the problem of adjusting our energy

production and consumption patterns to the requirements of a sustainable

future.}}

					
 
6
Ahlert, K.-H.; Dinther, C. v. 2010
Robustness of Scheduling Algorithms for Distributed Storage Systems. Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI). (Göttingen, Germany). 2195–2206.
Available at: click here
@Inproceedings{CitationKey,
author = {Ahlert, Klaus-Henning and Dinther, Clemens van},
title = {{Robustness of Scheduling Algorithms for Distributed Storage Systems}},
booktitle = {Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI)},
year = {2010},
address = {G\"{o}ttingen, Germany},
pages = {2195-2206},
url =
{http://webdoc.sub.gwdg.de/univerlag/2010/mkwi/03_anwendungen/it_in_der_energiewirtschaft/01_economic_robustness_of_scheduling_algorithms.pdf}}

					
 
7
Ahlert, K. H.; Block, C. 2010
Assessing the Impact of Price Forecast Errors on the Economics of Distributed Storage Systems. System Sciences (HICSS), 2010 43rd Hawaii International Conference on. 1–10.
doi:10.1109/HICSS.2010.72
@Inproceedings{CitationKey,
author = {Ahlert, K.-H. and Block, C.},
title = {{Assessing the Impact of Price Forecast Errors on the Economics of
Distributed Storage Systems}},
booktitle = {System Sciences (HICSS), 2010 43rd Hawaii International Conference
on},
year = {2010},
pages = {1 -10},
month = {5-8},
doi = {10.1109/HICSS.2010.72},
abstract = {This article analyzes the economic impact of price forecast errors
on the optimal operation schedules of distributed (battery) storage systems.
The presented simulation model extends a linear optimization model that achieves
up to 17% annual savings for a storage system in an environment with dynamically
changing electricity prices and under the assumptions of ex-ante known load
and price data. The main contribution of this paper is to replace the
deterministic load and price curves by imperfect forecasts of which the effect
of price forecast errors is systematically analyzed. All results are benchmarked
against the optimal result of the basic model. The main finding is that the
underlying storage optimization model performs with a high robustness against
price forecast errors. E.g., up to 10% Mean Absolute Percentage Error (MAPE)
for day-ahead price forecasts lead to less than 10% deviation from the optimal
result. I.e., the storage model yields up to 15% annual savings vs. 17% in the
optimal case.}}

					
 
8
Fluhr, J.; Ahlert, K.-H.; Weinhardt, C. 2010
A Stochastic Model for Simulating the Availability of Electric Vehicles to the Power Grid. Proceedings of the 43rd Hawaii International Conference on System Science (HICSS-43). (Hawaii, USA).
doi:10.1109/hicss.2010.33
@Inproceedings{CitationKey,
author = {Fluhr, Jonas and Ahlert, Klaus-Henning and Weinhardt, Christof},
title = {{A Stochastic Model for Simulating the Availability of Electric Vehicles
to the Power Grid}},
booktitle = {Proceedings of the 43rd Hawaii International Conference on System
Science (HICSS-43)},
year = {2010},
address = {Hawaii, USA},
doi = {http://dx.doi.org/10.1109/HICSS.2010.33}}

					
 
9
Ahlert, K.-H. 2009
Assessing the Economics of Distributed Storage Systems at the End Consumer Level. Proceedings of the 4th International Renewable Energy Storage Conference (IRES-4) (24.-25.11.). (Berlin, Germany).
@Inproceedings{CitationKey,
author = {Ahlert, Klaus-Henning},
title = {{Assessing the Economics of Distributed Storage Systems at the End
Consumer Level}},
booktitle = {Proceedings of the 4th International Renewable Energy Storage
Conference (IRES-4) (24.-25.11.)},
year = {2009},
address = {Berlin, Germany}}

					
 
10
Ahlert, K.-H.; van Dinther, C. 2009
Sensitivity Analysis of the Economic Benefits from Electricity Storage at the End Consumer Level. Proceedings of the IEEE Power Tech Conference (28.6.-2.7.). (Bucharest). paper 687.
doi:10.1109/ptc.2009.5282245
@Inproceedings{CitationKey,
author = {Ahlert, Klaus-Henning and van Dinther, Clemens},
title = {{Sensitivity Analysis of the Economic Benefits from Electricity Storage
at the End Consumer Level}},
booktitle = {Proceedings of the IEEE Power Tech Conference (28.6.-2.7.)},
year = {2009},
address = {Bucharest},
note = {paper 687},
doi = {http://dx.doi.org/10.1109/PTC.2009.5282245}}

					
 
11
Ahlert, K.-H.; van Dinther, C. 2009
Estimating economic benefits of electricity storage at the end consumer level. Proceedings of the 9. Internationale Tagung Wirtschaftsinformatik. (Vienna, Austria) vol. 2. 665–674.
@Inproceedings{CitationKey,
author = {Ahlert, Klaus-Henning and van Dinther, Clemens},
title = {{Estimating economic benefits of electricity storage at the end consumer
level}},
booktitle = {Proceedings of the 9. Internationale Tagung Wirtschaftsinformatik},
year = {2009},
address = {Vienna, Austria},
pages = {665-674},
volume = {2}}

					
 
12
Ahlert, K.-H.; van Dinther, C. 2008
Definition of an Optimization Model for Scheduling Electricity Storage Devices. Proceedings of the Web 2008 - 7th Workshop on e-Business. (Paris, France).
@Inproceedings{CitationKey,
author = {Ahlert, Klaus-Henning and van Dinther, Clemens},
title = {{Definition of an Optimization Model for Scheduling Electricity Storage
Devices}},
booktitle = {Proceedings of the Web 2008 - 7th Workshop on e-Business},
year = {2008},
address = {Paris, France}}

					
 
13
Deindl, M.; Block, C.; Vahidov, R.; Neumann, D. 2008
Load Shifting Agents for Automated Demand Side Management in Micro Energy Grids. Self-Adaptive and Self-Organizing Systems, 2008. SASO '08. Second IEEE International Conference on. 487–488.
@Inproceedings{CitationKey,
author = {Deindl, M. and Block, C. and Vahidov, R. and Neumann, D.},
title = {{Load Shifting Agents for Automated Demand Side Management in Micro
Energy Grids}},
booktitle = {Self-Adaptive and Self-Organizing Systems, 2008. SASO '08. Second
IEEE International Conference on},
year = {2008},
pages = {487-488},
month = {Oct.},
abstract = {This paper describes a novel approach for the automated management
of micro energy grids. In particular a market based resource allocation mechanism
is used to control energy generators and consumers within a micro energy grid.
This approach requires energy consumers (producers) to buy (sell) their energy
demands (supplies) through a specialized electronic auction platform. But as
manually negotiating all energy demands and supplies on such a market is a tedious
task, its automation is highly desirable and thus leads to the main contribution
of this paper: The automation of the demand side bidding process through
electronic bidding agents, which are equipped with an intelligent buying strategy
that allows them to dynamically react to market changes and adapt their bidding
behavior accordingly. More precisely, the agents are able to shift energy demand
within certain boundaries from (expensive) peak hours to those times of the
day where energy demand and thus energy prices are lower in order to minimize
their cost. Moreover, as our results show, this behavior leads to a smoothed
load curve for the whole system, i.e. demand peaks are reduced while base load
increases.}}

					
 
14
Block, C.; Neumann, D.; Weinhardt, C. 2008
A Market Mechanism for Energy Allocation in Micro-CHP Grids. Proceedings of the 41st Hawaii International Conference on System Sciences (HICSS). 172–172.
@Inproceedings{CitationKey,
author = {Block, C. and Neumann, D. and Weinhardt, C.},
title = {{A Market Mechanism for Energy Allocation in Micro-CHP Grids}},
booktitle = {Proceedings of the 41st Hawaii International Conference on System
Sciences (HICSS)},
year = {2008},
pages = {172-172},
month = {Jan.},
abstract = {Achieving a sustainable level of energy production and consumption
is one of the major challenges in our nowadays society. This paper contributes
to the objective of increasing energy efficiency by introducing a market mechanism
that facilitates the efficient matching of energy (i.e. electricity and heat)
demand and supply in Micro Energy Grids. More precisely we propose a combinatorial
double auction mechanism for the allocation and pricing of energy resources
especially taking into account the specific requirements of energy producers
and consumers. We describe the potential role of decentralized micro energy
grids and their coupling to the large scale power grid. Furthermore we introduce
an emergency fail over procedure that keeps the micro energy grid stable even
in cases where the auction mechanism fails. As the underlying energy allocation
problem itself is NP-hard, we derive a fast heuristic for finding efficient
supply and demand allocations. In addition we show the applicability of this
approach through numerica.}}

					

Other Contributions to Conferences (Selection)

1
Block, C. 2007
Price-Based Coordination in Decentralized Micro Power Grids. in: Kersten, G. E.; Rios, J.; Chen, E. (eds.), Group Decision and Negotiation (GDN) 2007. (Montreal, Canada).
@Conference{CitationKey,
author = {Block, Carsten},
title = {{Price-Based Coordination in Decentralized Micro Power Grids}},
booktitle = {Group Decision and Negotiation (GDN) 2007},
year = {2007},
address = {Montreal, Canada},
editor = {Kersten, G. E. and Rios, J. and Chen, E.}}

					

Other Publications

1
Dietz, B.; Ahlert, H.; Block, C. 2010
Driving Profile Generator. IISM Techreport. Institut of Information Systems and Management, Karlsruhe Institute of Technology. Karlsruhe, Germany.
@Techreport{CitationKey,
author = {Dietz, Benjamin and Ahlert, Henning and Block, Carsten},
title = {{Driving Profile Generator}},
year = {2010},
institution = {Institut of Information Systems and Management, Karlsruhe Institute
of Technology},
type = {IISM Techreport},
address = {Karlsruhe, Germany},
month = {June}}

					
 
2
Block, C.; Collins, J.; Ketter, W.; Weinhardt, C. 2009
A Multi-Agent Energy Trading Competition. ERS-2009-054-LIS. RSM Erasmus University. Rotterdam, The Netherlands.
http://hdl.handle.net/1765/17337
@Techreport{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolfgang and Weinhardt,
Christof},
title = {{A Multi-Agent Energy Trading Competition}},
year = {2009},
institution = {RSM Erasmus University},
number = {ERS-2009-054-LIS},
address = {Rotterdam, The Netherlands},
month = {11},
note = {Last revised 2010/05/01},
url = {http://hdl.handle.net/1765/17337},
abstract = {The energy sector will undergo fundamental changes

over the next ten years. Prices for fossil energy resources are

continuously increasing, there is an urgent need to reduce CO2

emissions, and the United States and European Union are strongly

motivated to become more independent from foreign energy imports.

These factors will lead to installation of large numbers of

distributed renewable energy generators, which are often

intermittent in nature. This trend conflicts with the current

power grid control infrastructure and strategies, where a few

centralized control centers manage a limited number of large power

plants such that their output meets the energy demands in real

time. As the proportion of distributed and intermittent generation

capacity increases, this task becomes much harder, especially as

the local and regional distribution grids where renewable energy

generators are usually installed are currently virtually

unmanaged, lack real time metering and are not built to cope with

power flow inversions (yet). All this is about to change, and so

the control strategies must be adapted accordingly. While the

hierarchical command-and-control approach served well in a world

with a few large scale generation facilities and many small

consumers, a more flexible, decentralized, and self-organizing

control infrastructure will have to be developed that can be

actively managed to balance both the large grid as a whole, as

well as the many lower voltage sub-grids. We propose a competitive

simulation test bed to stimulate research and development of

electronic agents that help manage these tasks. Participants in

the competition will develop intelligent agents that are

responsible to level energy supply from generators with energy

demand from consumers. The competition is designed to closely

model reality by bootstrapping the simulation environment with

real historic load, generation, and weather data. The simulation

environment will provide a low-risk platform that combines

simulated markets and real-world data to develop solutions that

can be applied to help building the self-organizing intelligent

energy grid of the future.}}

					
 
3
Ahlert, K.-H. 2009
Wirtschaftlichkeit dezentraler Stromspeicher-Systeme. Solarzeitalter 21(4). 31–37.
@Article{CitationKey,
author = {Ahlert, Klaus-Henning},
title = {{Wirtschaftlichkeit dezentraler Stromspeicher-Systeme}},
journal = {Solarzeitalter},
year = {2009},
volume = {21},
pages = {31-37},
number = {4},
month = {December}}

					
 
4
Schuller, A. 2009
Dezentrale Energieumwandlung in Gebäuden – ökonomisch und ökologisch sinnvoll. in Energynews [ 01| 2009] , Newsletter KIT Zentrum Energie.
@Misc{CitationKey,
author = {Schuller, Alexander},
title = {{Dezentrale Energieumwandlung in Geb\"{a}uden – \"{o}konomisch und
\"{o}kologisch sinnvoll}},
howpublished = {in Energynews [ 01| 2009] , Newsletter KIT Zentrum Energie},
year = {2009},
month = {September}}

					
 
5
Block, C.; Bomarius, F.; Bretschneider, P.; Briegel, F.; Burger, N.; Fey, B.; Frey, H.; Hartmann, J.; Kern, C.; Plail, B.; Praehauser, G.; Schetters, L.; Schöpf, F.; Schumann, D.; Schwammberger, F.; Terzidis, O.; Thiemann, R.; van Dinther, C.; von Sengbusch, K.; Weidlich, A.; Weinhardt, C. 2008
Internet der Energie - IKT für die Energiemärkte der Zukunft. BDI-Drucksache 418. Bundesverband der Deutschen Industrie e.V. (BDI).
Available at: click here
@Techreport{CitationKey,
author = {Block, C. and Bomarius, F. and Bretschneider, P. and Briegel, F. and
Burger, N. and Fey, B. and Frey, H. and Hartmann, J. and Kern, C. and Plail,
B. and Praehauser, G. and Schetters, L. and Sch\"{o}pf, F. and Schumann, D.
and Schwammberger, F. and Terzidis, O. and Thiemann, R. and van Dinther, C.
and von Sengbusch, K. and Weidlich, A. and Weinhardt, C.},
title = {{Internet der Energie - IKT f\"{u}r die Energiem\"{a}rkte der Zukunft}},
year = {2008},
institution = {Bundesverband der Deutschen Industrie e.V. (BDI)},
type = {BDI-Drucksache},
number = {418},
month = {12},
url =
{http://www.bdi.eu/download_content/InformationUndTelekommunikation/Broschuere_Internet_der_Energie.pdf},
abstract = {Drei ma\ssgebliche Einflussfaktoren wirken derzeit auf die
Energiewirtschaft ein und erfordern den Umbau in ein intelligentes und effizientes
Versorgungssystem, das deutlich st\"{a}rker als bisher durch Informations- und
Kommunikationstechnologien (IKT) vernetzt sein muss. 



Der erste Faktor ist die versch\"{a}rfte Knappheitssituation: Die Vorr\"{a}te
fossiler Energierohstoffe sind endlich und erleben deswegen schon heute starke
Preissteigerungen; auch die Kapazit\"{a}t, bis zu der die Atmosph\"{a}re CO2
aufnehmen kann, ohne dass ein Klimadesaster droht, ist ausgereizt und
begr\"{u}ndet erhebliche Anstrengungen in einen aktiven Klimaschutz. Um diesen
drohenden Grenzen des

Energiesystems einerseits sowie dem gleichzeitig weltweit steigenden Energiebedarf
andererseits zu begegnen, ist eine erheblich verbesserte Effizienz bei der
Energienutzung dringend erforderlich.



Zweitens stellt das ver\"{a}nderte regulatorische Umfeld erh\"{o}hte Anforderungen
an die datentechnische Vernetzung des Energiesystems. Durch die Entkopplung
von Stromerzeugung, -\"{u}bertragung und -verteilung m\"{u}ssen

unterschiedliche Akteure entlang der Wertsch\"{o}pfungskette \"{u}ber gemeinsame
Schnittstellen miteinander kommunizieren und interagieren. Neue Vorschriften
zur Standardisierung, zum Messwesen und zur Verbrauchstransparenz erzeugen zudem
gro\sse Datenmengen, die in intelligenten automatisierten Prozessen verarbeitet
werden m\"{u}ssen.



Als dritter Faktor schlie\sslich bewirken technische Entwicklungen und steigende
Energiepreise, dass in Zukunft vermehrt Strom aus erneuerbaren Energiequellen
sowohl auf Basis einer verst\"{a}rkt dezentralen als auch aus einer weiterhin
vorhandenen zentralen Versorgungsstruktur in das Stromnetz integriert werden
m\"{u}ssen. Dies erfordert ein wesentlich h\"{o}heres Ma\ss an Flexibilit\"{a}t
im Bereich der Spannungshaltung und der effizienten Lastflusssteuerung als im
derzeitigen System vorgesehen ist.



Diese drei treibenden Faktoren wirken zu einer Zeit, in der ein erheblicher
Investitionsbedarf in das deutsche und europ\"{a}ische Stromversorgungssystem
besteht. Nahezu die H\"{a}lfte der installierten Kraftwerkskapazit\"{a}t in
Deutschland muss in den kommenden Jahren ersetzt oder modernisiert werden, der
massive Ausbau der Stromnetze wird im gleichen Zeitraum ebenfalls erfolgen
m\"{u}ssen. Parallel wird

ein erheblicher Teil der privaten Haushalte renovierungsbed\"{u}rftig. Aufgrund
steigender Energiepreise werden bei den hier anstehenden Instandsetzungsarbeiten
zunehmend neue Energiespartechnologien und kommunikative Endger\"{a}te eingesetzt.



Angesichts dieses Investitionspotenzials besteht die einmalige Chance, einen
\"{U}bergang des derzeitigen Energiesystems hin zu einem Internet der Energie
zu f\"{o}rdern, in dem durch die intelligente Koordination zwischen Erzeugung
und Verbrauch h\"{o}chstm\"{o}gliche Effizienzgewinne bei der Nutzung knapper
Energieressourcen erreicht werden k\"{o}nnen. Die notwendigen Technologien f\"{u}r
die intelligente und effiziente Erneuerung des Energiesystems sind heute
weitestgehend vorhanden. Die Kombination und Integration der verf\"{u}gbaren
Systeme ist jedoch noch weit hinter den M\"{o}glichkeiten zur\"{u}ckgeblieben.
Es bedarf demnach vor allem einer Weichenstellung bei den beteiligten Industrien
und der Politik, die sich auf Handlungsma\ssnahmen und auch auf technische
Standards einigen m\"{u}ssen, um den anstehenden Ver\"{a}nderungsprozess aktiv
und zielgerichtet zu gestalten.



Der Informations- und Kommunikationstechnologie kommt bei der Entwicklung einer
zukunftsf\"{a}higen Energieversorgung eine Schl\"{u}sselrolle zu. Sie ist die
Basis f\"{u}r die Realisierung eines zuk\"{u}nftigen Internets der Energie,
das hei\sst der intelligenten elektronischen Vernetzung aller Komponenten des
Energiesystems. Durch diese verst\"{a}rkte Vernetzung k\"{o}nnen
Erzeugungsanlagen, Netzkomponenten, Verbrauchsger\"{a}te und Nutzer des
Energiesystems untereinander Informationen austauschen und selbstst\"{a}ndig
ihre Prozesse aufeinander abstimmen und optimieren. So entwickelt sich das
bisherige Energienetz mit passiven, informationsarmen Komponenten und einer
\"{u}berwiegenden Einweg-Kommunikation hin zu einem marktorientierten,
dienstebasierten und dezentral organisierten System, in dem interaktive
Optimierungsm\"{o}glichkeiten

und neue Energiedienstleistungen geschaffen werden k\"{o}nnen. Durch einen
verst\"{a}rkten Einsatz von energetisch optimierender Hausautomation und von
Smart Metering haben Privatkunden, \"{o}ffentliche Einrichtungen und auch kleine
und mittlere Unternehmen die M\"{o}glichkeit, ihren Energieverbrauch zu reduzieren
oder zeitlich so zu verschieben, dass Lastspitzen und Engpasssituationen vermieden
werden. Verbesserte Energiemanagementsysteme auf der \"{U}bertragungs- und
Verteilnetzebene erm\"{o}glichen, dass dezentrale Erzeugung und erneuerbare
Energiequellen im gro\ssen Ma\ssstab optimal eingesetzt werden k\"{o}nnen, ohne
dabei die

Systemstabilit\"{a}t und -qualit\"{a}t zu beeintr\"{a}chtigen. Die gr\"{o}\sste
Herausforderung besteht indes darin, eine Integrationsebene zwischen
betriebswirtschaftlichen Anwendungen und dem physikalischen Netz zu schaffen,
welche eine Kommunikation komplexer, \"{u}ber heterogene Netze und Firmengrenzen
hinweg verteilter IT-Komponenten erm\"{o}glicht.



Der \"{U}bergang des derzeitigen Energiesystems hin zu einem Internet der Energie
l\"{a}sst eine Vielzahl m\"{o}glicher neuer Gesch\"{a}ftsmodelle entstehen.
Stromnetzbetreiber k\"{o}nnen sich zuk\"{u}nftig vermehrt zu
Informationsdienstleistern entwickeln; neue Dienstleistungen, wie beispielsweise
das Energiemanagement beim Kunden, werden entstehen. Neue Akteure werden in
den Markt eintreten, zum Beispiel Betreiber von virtuellen
Regelenergiekraftwerken. Durch eine an das Energieangebot angepasste Einbindung
von (hybriden) Elektroautos bietet sich zuk\"{u}nftig auch f\"{u}r den
Transportsektor eine neue M\"{o}glichkeit, aktiv an der Optimierung der
Energienetze mitzuwirken.



Als konkrete Handlungsempfehlungen zur Erschlie\ssung dieser neuen
Gesch\"{a}ftsfelder und zur Verwirklichung eines zukunftsf\"{a}higen intelligenten
Energiesystems werden im Rahmen dieses Papiers Ma\ssnahmen auf mehreren Ebenen
vorgeschlagen. Auf der technischen Ebene muss ein starker Fokus auf der
Koordination der Standardisierung in der Informations-, Kommunikations- und
Energietechnik liegen, die insbesondere eine durchg\"{a}ngige bidirektionale
Kommunikation zwischen Stromerzeugung und Endverbrauchern unterst\"{u}tzt. Neben
der F\"{o}rderung der Grundlagenforschung und Ausbildung in den relevanten
technik- und wirtschaftswissenschaftlichen Disziplinen ist insbesondere auch
die F\"{o}rderung von Initiativen zur angewandten Forschung und zur Pilotierung
des Internets der Energie erforderlich, um Konzepte zu erproben und Erkenntnisse
aus der Forschung in den laufenden Transformationsprozess der Energiewirtschaft
einzubringen. Um sicherzustellen, dass die innovativen Konzepte einer
intelligenten und effizienten Energieversorgung auch tats\"{a}chlich zum Einsatz
kommen, m\"{u}ssen nachhaltige Innovationsanreize insbesondere f\"{u}r
Netzbetreiber geschaffen werden. In diesem Bereich muss die Regulierung
entsprechend gestalterisch eingreifen. Schlie\sslich ist eine geeignete
\"{O}ffentlichkeitsarbeit erforderlich, um alle relevanten Akteure dar\"{u}ber
zu informieren, wie sie zur Umsetzung der Vision des Internets der Energie
beitragen k\"{o}nnen.



Die identifizierten Handlungsempfehlungen k\"{o}nnen wesentlich dazu beitragen,
das heutige Energiesystem zu einer noch effizienteren, zukunftsf\"{a}higen
Energieversorgungsinfrastruktur zu entwickeln und damit die

internationale Spitzenposition deutscher Unternehmen und Forschungseinrichtungen
im Bereich intelligenter und integrierter Energietechnologien zu st\"{a}rken
und auszubauen.}}

					

Invited Talks (Selection)

1
A. Schuller: E-Energy Projekt MeRegio: Smart Grid Made in Germany, kine-e.V. Vortragsreihe, 02.06.2010, Karlsruhe.
@InvitedTalk{CitationKey,
}
					
 
2
Assessing the Market Price Impact of Distributed Storage Systems for Demand Response, at the Advanced Energy Storage Forum 2010 (marcusevans), 26.-27.4., Berlin.
@InvitedTalk{CitationKey,
}
					
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association