Dr. Carsten Block
Dr. Carsten Block
Block | Consult


+49 761 21446-71
+49 761 21446-69
eMail-Adresse anzeigen  
 

Tätigkeiten

Lehre

Vorlesungen

Betreuung von Seminar-, Studien- und Diplomarbeiten

Forschung

Aktuelle Forschungsprojekte

Erfolgreich abgeschlossene Forschungsprojekte

Forschungsinteressen

Energiemärkte, Energieerzeugung und Energieverbrauch

Software Engineering und Service Sciences

Tutorials

Internationales Engagement

Gastwissenschaftler

Lebenslauf

05/2009 Certified Scrum Master (CSM)
08/2006 - 10/2006 Forschungsaufenthalt am InterNeg Research Center, Concordia University, Montreal, Kanada
02/2006 - Wissenschaftlicher Mitarbeiter am Insitut für Informationswirtschaft und -management, Universität Karlsruhe (TH)
08/2005 - 10/2005 Forschungsaufenthalt an der Concordia University, Montreal, Kanada
07/2005 - 01/2006 Diplomarbeit am Insitut für Informationswirtschaft und -management
10/1999 - 01/2006 Studium Wirtschaftsingenieurwesen an der Universität Karlsruhe (TH)
08/1997 - 06/1999 Ausbildung zum Bankkaufmann bei der Deutsche Bank AG
09/1996 - 06/1997 Grundwehrdienst im 1. PzArtBtl 215 in Augustdorf
1996 Abitur am Aldegrever Gymnasium in Soest
Publikationen

Monographien/Herausgeberschaften

1
Block, C. 2010
Agile Market Engineering: Bridging the gap between business concepts and running markets. PhD Thesis. School of Economics and Business Engineering, Karlsruhe Institute of Technology. Karlsruhe, Germany.
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019356
@Phdthesis{CitationKey,
author = {Block, Carsten},
title = {{Agile Market Engineering: Bridging the gap between business concepts
and running markets}},
school = {School of Economics and Business Engineering, Karlsruhe Institute
of Technology},
year = {2010},
type = {PhD Thesis},
address = {Karlsruhe, Germany},
month = {July},
url = {http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019356}}

					

Begutachtete Beiträge in Fachzeitschriften

1
Gottwalt, S.; Ketter, W.; Block, C.; Collins, J.; Weinhardt, C. 2011
Demand side management – A simulation of household behavior under variable prices. Energy Policy 39(12). 8163–8174.
doi:10.1016/j.enpol.2011.10.016
@Article{CitationKey,
author = {Sebastian Gottwalt and Wolfgang Ketter and Carsten Block and John
Collins and Christof Weinhardt},
title = {{Demand side management -- A simulation of household behavior under
variable prices}},
journal = {Energy Policy},
year = {2011},
volume = {39},
pages = {8163--8174},
number = {12},
doi = {10.1016/j.enpol.2011.10.016},
abstract = {Within the next years, consumer households will be increasingly
equipped with smart metering and intelligent appliances. These technologies
are the basis for households to better monitor electricity consumption and to
actively control loads in private homes. Demand side management (DSM) can be
adopted to private households. We present a simulation model that generates
household load profiles under flat tariffs and simulates changes in these profiles
when households are equipped with smart appliances and face time-based electricity
prices.



We investigate the impact of smart appliances and variable prices on electricity
bills of a household. We show that for households the savings from equipping
them with smart appliances are moderate compared to the required investment.
This finding is quite robust with respect to variation of tariff price spreads
and to different types of appliance utilization patterns.



Finally, our results indicate that electric utilities may face new demand peaks
when day-ahead hourly prices are applied. However, a considerable amount of
residential load is available for shifting, which is interesting for the utilities
to balance demand and supply.}}

					
 
2
Hirsch, C.; Hillemacher, L.; Block, C.; Schuller, A.; Moest, D. 2010
Simulations in the Smart Grid Field Study MeRegio Simulationen im MeRegio Smart Grid Feldtest. it - Information Technology 52(2). 100–106.
doi:10.1524/itit.2010.0577
http://www.oldenbourg-link.com/doi/abs/10.1524/itit.2010.0577
@Article{CitationKey,
author = {Hirsch, Christian and Hillemacher, Lutz and Block, Carsten and Schuller,
Alexander and Moest, Dominik},
title = {{Simulations in the Smart Grid Field Study MeRegio

Simulationen im MeRegio Smart Grid Feldtest}},
journal = {it - Information Technology},
year = {2010},
volume = {52},
pages = {100-106},
number = {2},
month = {03},
doi = {10.1524/itit.2010.0577},
url = {http://www.oldenbourg-link.com/doi/abs/10.1524/itit.2010.0577},
abstract = {The aim of the research project MeRegio is to meet the claim for
more efficient decentralized energy systems by integrating advanced information
and communication technologies (ICT) into all stages of the energy supply chain.
Several marketplaces — in particular for power and for ancillary services —
which are coupled to the technical energy infrastructure through a powerful
and lawful ICT infrastructure should serve as a basis for an efficient and
transparent coordination of energy supply, energy demand, and services. The
developed concepts will be both validated by simulations and tested within a
model region.}}

					

Begutachtete Beiträge in Konferenz- und Sammelbänden

1
Block, C.; Collins, J.; Gottwalt, S.; Ketter, W.; Weinhardt, C. 2010, forthcoming
Modeling household energy consumption under fixed and variable pricing. Workshop on Information Systems and Technology. (St. Louis, Missouri, USA).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Gottwalt, Sebastian and Ketter,
Wolfgang and Weinhardt, Christof},
title = {{Modeling household energy consumption under fixed and variable
pricing}},
booktitle = {Workshop on Information Systems and Technology},
year = {2010},
address = {St. Louis, Missouri, USA},
month = {December}}

					
 
2
Block, C.; Collins, J.; Ketter, W. 2010, forthcoming
Agent-based competitive simulation: Exploring future retail energy markets. Proceedings of the 12th International Conference on Electronic Commerce (ICEC). (Hawaii, USA).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolf},
title = {{Agent-based competitive simulation: Exploring future retail energy
markets}},
booktitle = {Proceedings of the 12th International Conference on Electronic
Commerce (ICEC)},
year = {2010},
address = {Hawaii, USA},
month = {August},
abstract = {Future sustainable energy systems will need efficient, clean,

low-cost, renewable energy sources, as well as market structures that motivate

sustainable behaviors on the part of households and businesses. "Smart grid"

components can help consumers manage their consumption only if pricing

policies are in place that motivate consumers to install and use these new

tools in ways that maximize utilization of renewable energy sources while

minimizing dependence on non-renewable energy. Serious market breakdowns, such

as the California energy crisis in 2000, have made policy makers wary of

setting up new retail energy markets. We present the design of an open,

competitive simulation approach that will produce robust research results on

the structure and operation of retail power markets as well as on automating

market interaction by means of competitively tested and benchmarked electronic

agents. These results will yield policy guidance that can significantly reduce

the risk of instituting competitive energy markets at the retail level,

thereby applying economic motivation to the problem of adjusting our energy

production and consumption patterns to the requirements of a sustainable

future.}}

					
 
3
Block, C.; Collins, J.; Ketter, W. 2010, forthcoming
Exploring retail energy markets through competitive simulation. in: Larson, K. (ed.), ACM EC 2010 Workshop on Trading Agent Design and Analysis (TADA). (Harvard University).
@Inproceedings{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolfgang},
title = {{Exploring retail energy markets through competitive simulation}},
booktitle = {ACM EC 2010 Workshop on Trading Agent Design and Analysis (TADA)},
year = {2010},
address = {Harvard University},
editor = {Kate Larson},
month = {June},
abstract = {Future sustainable energy systems will need efficient, clean,

low-cost, renewable energy sources, as well as market structures that motivate

sustainable behaviors on the part of households and businesses. "Smart grid"

components can help consumers manage their consumption only if pricing

policies are in place that motivate consumers to install and use these new

tools in ways that maximize utilization of renewable energy sources while

minimizing dependence on non-renewable energy. Serious market breakdowns, such

as the California energy crisis in 2000, have made policy makers wary of

setting up new retail energy markets. We present the design of an open,

competitive simulation approach that will produce robust research results on

the structure and operation of retail power markets as well as on automating

market interaction by means of competitively tested and benchmarked 

agents. These results will yield policy guidance that can significantly reduce

the risk of instituting competitive energy markets at the retail level,

thereby applying economic motivation to the problem of adjusting our energy

production and consumption patterns to the requirements of a sustainable

future.}}

					
 
4
Ahlert, K. H.; Block, C. 2010
Assessing the Impact of Price Forecast Errors on the Economics of Distributed Storage Systems. System Sciences (HICSS), 2010 43rd Hawaii International Conference on. 1–10.
doi:10.1109/HICSS.2010.72
@Inproceedings{CitationKey,
author = {Ahlert, K.-H. and Block, C.},
title = {{Assessing the Impact of Price Forecast Errors on the Economics of
Distributed Storage Systems}},
booktitle = {System Sciences (HICSS), 2010 43rd Hawaii International Conference
on},
year = {2010},
pages = {1 -10},
month = {5-8},
doi = {10.1109/HICSS.2010.72},
abstract = {This article analyzes the economic impact of price forecast errors
on the optimal operation schedules of distributed (battery) storage systems.
The presented simulation model extends a linear optimization model that achieves
up to 17% annual savings for a storage system in an environment with dynamically
changing electricity prices and under the assumptions of ex-ante known load
and price data. The main contribution of this paper is to replace the
deterministic load and price curves by imperfect forecasts of which the effect
of price forecast errors is systematically analyzed. All results are benchmarked
against the optimal result of the basic model. The main finding is that the
underlying storage optimization model performs with a high robustness against
price forecast errors. E.g., up to 10% Mean Absolute Percentage Error (MAPE)
for day-ahead price forecasts lead to less than 10% deviation from the optimal
result. I.e., the storage model yields up to 15% annual savings vs. 17% in the
optimal case.}}

					
 
5
Deindl, M.; Block, C.; Vahidov, R.; Neumann, D. 2008
Load Shifting Agents for Automated Demand Side Management in Micro Energy Grids. Self-Adaptive and Self-Organizing Systems, 2008. SASO '08. Second IEEE International Conference on. 487–488.
@Inproceedings{CitationKey,
author = {Deindl, M. and Block, C. and Vahidov, R. and Neumann, D.},
title = {{Load Shifting Agents for Automated Demand Side Management in Micro
Energy Grids}},
booktitle = {Self-Adaptive and Self-Organizing Systems, 2008. SASO '08. Second
IEEE International Conference on},
year = {2008},
pages = {487-488},
month = {Oct.},
abstract = {This paper describes a novel approach for the automated management
of micro energy grids. In particular a market based resource allocation mechanism
is used to control energy generators and consumers within a micro energy grid.
This approach requires energy consumers (producers) to buy (sell) their energy
demands (supplies) through a specialized electronic auction platform. But as
manually negotiating all energy demands and supplies on such a market is a tedious
task, its automation is highly desirable and thus leads to the main contribution
of this paper: The automation of the demand side bidding process through
electronic bidding agents, which are equipped with an intelligent buying strategy
that allows them to dynamically react to market changes and adapt their bidding
behavior accordingly. More precisely, the agents are able to shift energy demand
within certain boundaries from (expensive) peak hours to those times of the
day where energy demand and thus energy prices are lower in order to minimize
their cost. Moreover, as our results show, this behavior leads to a smoothed
load curve for the whole system, i.e. demand peaks are reduced while base load
increases.}}

					
 
6
Block, C.; Neumann, D.; Weinhardt, C. 2008
A Market Mechanism for Energy Allocation in Micro-CHP Grids. Proceedings of the 41st Hawaii International Conference on System Sciences (HICSS). 172–172.
@Inproceedings{CitationKey,
author = {Block, C. and Neumann, D. and Weinhardt, C.},
title = {{A Market Mechanism for Energy Allocation in Micro-CHP Grids}},
booktitle = {Proceedings of the 41st Hawaii International Conference on System
Sciences (HICSS)},
year = {2008},
pages = {172-172},
month = {Jan.},
abstract = {Achieving a sustainable level of energy production and consumption
is one of the major challenges in our nowadays society. This paper contributes
to the objective of increasing energy efficiency by introducing a market mechanism
that facilitates the efficient matching of energy (i.e. electricity and heat)
demand and supply in Micro Energy Grids. More precisely we propose a combinatorial
double auction mechanism for the allocation and pricing of energy resources
especially taking into account the specific requirements of energy producers
and consumers. We describe the potential role of decentralized micro energy
grids and their coupling to the large scale power grid. Furthermore we introduce
an emergency fail over procedure that keeps the micro energy grid stable even
in cases where the auction mechanism fails. As the underlying energy allocation
problem itself is NP-hard, we derive a fast heuristic for finding efficient
supply and demand allocations. In addition we show the applicability of this
approach through numerica.}}

					
 
7
Block, C.; Neumann, D. 2008
A Decision Support System for Choosing Market Mechanisms in e-Procurement. in: Gimpel, H.; Jennings, N. R.; Kersten; E., G.; Ockenfels; Axel; Weinhardt, C. (eds.), Negotiation, Auctions, and Market Engineering. Vol. 2. Berlin, Heidelberg: Springer. 44–57.
http://dx.doi.org/10.1007/978-3-540-77554-6_3
@Incollection{CitationKey,
author = {Block, Carsten and Neumann, Dirk},
title = {{A Decision Support System for Choosing Market Mechanisms in
e-Procurement}},
booktitle = {Negotiation, Auctions, and Market Engineering},
publisher = {Springer},
year = {2008},
editor = {Gimpel, Henner and Jennings, Nicholas R. and Kersten and E., Gregory
and Ockenfels and Axel and Weinhardt, Christof},
volume = {2},
pages = {44--57},
address = {Berlin, Heidelberg},
url = {http://dx.doi.org/10.1007/978-3-540-77554-6_3}}

					
 
8
Neumann, D.; Block, C.; Weinhardt, C.; Karabulut, Y. 2007
Knowledge-Driven Selection of Market Mechanisms in E-Procurement. Proceedings of the 15th European Conference on Information Systems (ECIS’ 07). (St. Gallen, Switzerland). 143–154.
@Inproceedings{CitationKey,
author = {Neumann, Dirk and Block, Carsten and Weinhardt, Christof and Karabulut,
Y\"{u}cel},
title = {{Knowledge-Driven Selection of Market Mechanisms in E-Procurement}},
booktitle = {Proceedings of the 15th European Conference on Information Systems
(ECIS’ 07)},
year = {2007},
address = {St. Gallen, Switzerland},
pages = {143-154},
month = {June},
abstract = {The variety of procurement mechanisms present in the nowadays
e-procurement landscape ranging from electronic catalogue systems over
e-negotiations to e-auctions, points at the fact that there exists no single
best solution for all sourcing activities. Each mechanism rather has certain
advantages and disadvantages. The discipline of economics has traditionally
been devoted to the study of markets and market mechanisms. The fundamental
lesson learned from economics is that even small changes in the exchange
mechanisms can have considerable impact on the outcome. Stated differently,
if the market engineer  intends  to  attain  a  certain  mechanism  outcome
(e.g.,  efficiency,  fairness,  revenue maximization), he can define the mechanism
in a way that it induces the right incentives for market participants  to  act
as  desired  in  order  to  achieve  the  envisioned  outcome.  Unfortunately,
a comprehensive system that combines all relevant design aspects into one single
knowledge-based decision  support  system  is  missing.  This  paper  introduces
such  a  system,  which  can  capture theoretical  and  empirical  results.
It  also  supports  the  design  of  procurement  mechanisms  by prescribing
mechanism formats using an adapted case-based reasoning algorithm. The knowledge-

based system, KMS, is implemented in a web application as a proof-of-concept.}}

					
 
9
Kolitz, K.; Block, C.; Weinhardt, C. 2007
meet2trade: An Electronic Market Platform and Experiment System. in: Kersten, G. E.; Rios, J.; Chen, E. (eds.), Group Decision and Negotiation (GDN) 2007. (Montreal, Canada).
@Inproceedings{CitationKey,
author = {Kolitz, Klaus and Block, Carsten and Weinhardt, Christof},
title = {{meet2trade: An Electronic Market Platform and  Experiment System}},
booktitle = {Group Decision and Negotiation (GDN) 2007},
year = {2007},
address = {Montreal, Canada},
editor = {Kersten, G. E. and Rios, J. and Chen, E.},
abstract = {The development of new electronic markets is challenging, since
many factors influence the market outcomes and hence the markets’ success. Even
worse, a fundamental lesson learned from economics is that details matter: small
changes in market design can have a significant impact on the behavior of the
market participants and thus on the achieved outcomes. Consequently a well
structured process for design, implementation, testing and maintenance of markets
is required. meet2trade is a software tool suite designed to systematically
support each step of such a Market Engineering (ME) process. This paper presents
the generic trading platform meet2trade that enables users to individually
configure their own electronic markets, to run them on the integrated auction
server, and to evaluate them using the built-in full-featured lab experiment
system.}}

					
 
10
Block, C.; Kersten, G.; Gimpel, H.; Weinhardt, C. 2006
Reasons for rejecting Pareto-improvements in negotiations. in: Seifert, S.; Weinhardt, C. (eds.), Group Decision and Negotiation (GDN) 2006. (International Conference, Karlsruhe, Germany, June 25-28, 2006). 243–246.
Available at: click here
@Inproceedings{CitationKey,
author = {Block, C. and Kersten, G. and Gimpel, H. and Weinhardt, C.},
title = {{Reasons for rejecting Pareto-improvements in negotiations}},
booktitle = {Group Decision and Negotiation (GDN) 2006},
year = {2006},
address = {International Conference, Karlsruhe, Germany, June 25-28, 2006},
pages = {243-246},
editor = {Seifert, S. and Weinhardt, C.},
url =
{http://books.google.de/books?id=TNa3SjzfEdUC&lpg=PP1&hl=de&pg=PA243#v=onepage&q&f=false},
abstract = {On an abstract level, negotiators that mutually reached and accepted
a non-optimal agreement in a bilateral negotiation should accept a
Pareto-improvement of this agreement. None of the two parties would be harmed
but at least one would benefit. However, many negotiators reject such well-meant
assistance.  This paper empirically studies why this is the case.}}

					

Sonstige Konferenzbeiträge (Auswahl)

1
Block, C.; Collins, J.; Filipova-Neumann, L.; Ketter, W. 2010
A competitive testbed for the development of intelligent agents in the energy domain. Proceedings of the 11th Group Decision and Negotiation Conference (GDN). (Delft, The Netherlands).
@Conference{CitationKey,
author = {Block, Carsten and Collins, John and Filipova-Neumann, Lilia and Ketter,
Wolfgang},
title = {{A competitive testbed for the development of intelligent agents in
the energy domain}},
booktitle = {Proceedings of the 11th Group Decision and Negotiation Conference
(GDN)},
year = {2010},
address = {Delft, The Netherlands}}

					
 
2
Blau, B.; Block, C.; Stößer, J. 2008
How to trade Electronic Services? – Current Status and Open Questions. Proceedings of the Joint Conference of the INFORMS Section on Group Decision and Negotiation, the EURO Working Group on Decision and Negotiation Support, and the EURO Working Group on Decision Support Systems. (Coimbra, Portugal).
@Conference{CitationKey,
author = {Blau, Benjamin and Block, Carsten and St\"{o}\sser, Jochen},
title = {{How to trade Electronic Services? – Current Status and Open Questions}},
booktitle = {Proceedings of the Joint Conference of the INFORMS Section on Group
Decision and Negotiation, the EURO Working Group on Decision and Negotiation
Support, and the EURO Working Group on Decision Support Systems},
year = {2008},
address = {Coimbra, Portugal},
month = {June},
abstract = {Electronic Services become more and more important for our daily
life. News and communication services are among the most prominent examples
that drastically transformed the way we keep ourselves informed and relate to
each other. But new application areas for electronic services such as grid
computing, security and surveillance, ambient assisted living, or intelligent
facility management especially with focus on energy optimization are already
emerging. All these services are tradeable goods meant to add value to our daily
life and thus come at a price. This is why in this paper we focus on research
done and future research on mechanisms for trading services. Our main claim
is that different types of services need different types of trading mechanisms.
Thus, at first we classify electronic services into different categories and
then describe suitbale trading mechanisms for each of these categories. Despite
the work done already, a lot of additional research has to be accomplished in
this particular field. We therefore conclude our paper with a roadmap for future
research on how to trade services.}}

					
 
3
Block, C.; Chen, E. 2007
Fast Prototyping of Electronic Agents for the Web. in: Kersten, G. E.; Rios, J.; Chen, E. (eds.), Group Decision and Negotiation (GDN) 2007. (Montreal, Canada).
@Conference{CitationKey,
author = {Block, Carsten and Chen, Eva},
title = {{Fast Prototyping of Electronic Agents for the Web}},
booktitle = {Group Decision and Negotiation (GDN) 2007},
year = {2007},
address = {Montreal, Canada},
editor = {Kersten, G. E. and Rios, J. and Chen, E.},
abstract = {During the last years, a significant amount of research has been
focused on the field of software agents and agent-based systems for
e-negotiations. In many of these projects, specific solutions were developed
to provide artificial testbeds for agents interacting with humans or other agents
(Collis 1998, Howden 2001, Bellifemine 2003, Chen 2005). On the one hand, this
approach usually ensures that all environmental parameters can be controlled
(e.g., pertaining to a specific task, limiting time for negotiations, taking
place in a laboratory) in order isolate the effects of agents on the dependent
variables (e.g., economic outcome, subjective assessment of the agent,
satisfaction with results, etc). On the other hand, the external validity of
such experiments can be challenged as e.g. real negotiations do not involve
contrived cases, are not limited to a specific time frame, and are especially
subjected to influences of the on-line medium as well as the e-negotiation system
(ENS). Recent experiment results further suggest that the “system matters quite
a lot”, in that the ENS plays an integral role in shaping people’s perceptions
and economic outcomes (Kolitz 2007). In this paper, we present an approach for
implementing electronic software agents capable of interacting with virtually
every web-based application available on the Internet. A distinct advantage
of our method is the minimal effort required for creating such agents, which
allows software engineers to focus on developing the agent’s strategies instead
of having to handle the complications involved in the implementation of complex
communication and message exchange interfaces. As a proof-of-concept, this paper
describes an implementation for a simple agent capable of autonomously acting
in a bilateral negotiation protocol on the Invite  negotiation support system.}}

					
 
4
Block, C. 2007
Price-Based Coordination in Decentralized Micro Power Grids. in: Kersten, G. E.; Rios, J.; Chen, E. (eds.), Group Decision and Negotiation (GDN) 2007. (Montreal, Canada).
@Conference{CitationKey,
author = {Block, Carsten},
title = {{Price-Based Coordination in Decentralized Micro Power Grids}},
booktitle = {Group Decision and Negotiation (GDN) 2007},
year = {2007},
address = {Montreal, Canada},
editor = {Kersten, G. E. and Rios, J. and Chen, E.}}

					

Sonstige Veröffentlichungen

1
Dietz, B.; Ahlert, H.; Block, C. 2010
Driving Profile Generator. IISM Techreport. Institut of Information Systems and Management, Karlsruhe Institute of Technology. Karlsruhe, Germany.
@Techreport{CitationKey,
author = {Dietz, Benjamin and Ahlert, Henning and Block, Carsten},
title = {{Driving Profile Generator}},
year = {2010},
institution = {Institut of Information Systems and Management, Karlsruhe Institute
of Technology},
type = {IISM Techreport},
address = {Karlsruhe, Germany},
month = {June}}

					
 
2
Block, C.; Collins, J.; Ketter, W.; Weinhardt, C. 2009
A Multi-Agent Energy Trading Competition. ERS-2009-054-LIS. RSM Erasmus University. Rotterdam, The Netherlands.
http://hdl.handle.net/1765/17337
@Techreport{CitationKey,
author = {Block, Carsten and Collins, John and Ketter, Wolfgang and Weinhardt,
Christof},
title = {{A Multi-Agent Energy Trading Competition}},
year = {2009},
institution = {RSM Erasmus University},
number = {ERS-2009-054-LIS},
address = {Rotterdam, The Netherlands},
month = {11},
note = {Last revised 2010/05/01},
url = {http://hdl.handle.net/1765/17337},
abstract = {The energy sector will undergo fundamental changes

over the next ten years. Prices for fossil energy resources are

continuously increasing, there is an urgent need to reduce CO2

emissions, and the United States and European Union are strongly

motivated to become more independent from foreign energy imports.

These factors will lead to installation of large numbers of

distributed renewable energy generators, which are often

intermittent in nature. This trend conflicts with the current

power grid control infrastructure and strategies, where a few

centralized control centers manage a limited number of large power

plants such that their output meets the energy demands in real

time. As the proportion of distributed and intermittent generation

capacity increases, this task becomes much harder, especially as

the local and regional distribution grids where renewable energy

generators are usually installed are currently virtually

unmanaged, lack real time metering and are not built to cope with

power flow inversions (yet). All this is about to change, and so

the control strategies must be adapted accordingly. While the

hierarchical command-and-control approach served well in a world

with a few large scale generation facilities and many small

consumers, a more flexible, decentralized, and self-organizing

control infrastructure will have to be developed that can be

actively managed to balance both the large grid as a whole, as

well as the many lower voltage sub-grids. We propose a competitive

simulation test bed to stimulate research and development of

electronic agents that help manage these tasks. Participants in

the competition will develop intelligent agents that are

responsible to level energy supply from generators with energy

demand from consumers. The competition is designed to closely

model reality by bootstrapping the simulation environment with

real historic load, generation, and weather data. The simulation

environment will provide a low-risk platform that combines

simulated markets and real-world data to develop solutions that

can be applied to help building the self-organizing intelligent

energy grid of the future.}}

					
 
3
Schoenfeld, A.; Block, C. A. 2009
A Meta-Framework for Agile Development of Soa Market Platforms. SSRN eLibrary Working Paper Series.
http://ssrn.com/abstract=1600078
@Article{CitationKey,
author = {Schoenfeld, Anton  and Block, Carsten A.},
title = {{A Meta-Framework for Agile Development of Soa Market Platforms}},
journal = {SSRN eLibrary Working Paper Series},
year = {2009},
month = {May},
url = {http://ssrn.com/abstract=1600078},
abstract = {Markets – and in particular auction markets – are usually known
to be efficient mechanisms for information aggregation and for the allocation
of goods and services. But a fundamental lesson learned from Economics is that
market design matters. Even small changes in market rules may lead to
significantly different outcomes. Thus a good design, implementation, and
validation of a market mechanism poses a big challenge to market engineers,
which cannot be mastered without appropriate engineering approach accompanied
by appropriate supporting tools. In this paper we describe the tools available
in the area of Market Engineering and analyze their strengths and weaknesses.
Also we propose a new approach towards building market mechanisms that offers
market engineers a new degree of agility and freedom during the design and
implementation phases. The new approach follows the principles of service-oriented
architectures and agile model driven development. Furthermore, we present three
different case studies where the new framework was successfully applied for
the fast implementation of new electronic market platforms and we present results
from a complexity analysis as well as from a preliminary technology acceptance
survey among a small group of market engineers.}}

					
 
4
Block, C.; Bomarius, F.; Bretschneider, P.; Briegel, F.; Burger, N.; Fey, B.; Frey, H.; Hartmann, J.; Kern, C.; Plail, B.; Praehauser, G.; Schetters, L.; Schöpf, F.; Schumann, D.; Schwammberger, F.; Terzidis, O.; Thiemann, R.; van Dinther, C.; von Sengbusch, K.; Weidlich, A.; Weinhardt, C. 2008
Internet der Energie - IKT für die Energiemärkte der Zukunft. BDI-Drucksache 418. Bundesverband der Deutschen Industrie e.V. (BDI).
Available at: click here
@Techreport{CitationKey,
author = {Block, C. and Bomarius, F. and Bretschneider, P. and Briegel, F. and
Burger, N. and Fey, B. and Frey, H. and Hartmann, J. and Kern, C. and Plail,
B. and Praehauser, G. and Schetters, L. and Sch\"{o}pf, F. and Schumann, D.
and Schwammberger, F. and Terzidis, O. and Thiemann, R. and van Dinther, C.
and von Sengbusch, K. and Weidlich, A. and Weinhardt, C.},
title = {{Internet der Energie - IKT f\"{u}r die Energiem\"{a}rkte der Zukunft}},
year = {2008},
institution = {Bundesverband der Deutschen Industrie e.V. (BDI)},
type = {BDI-Drucksache},
number = {418},
month = {12},
url =
{http://www.bdi.eu/download_content/InformationUndTelekommunikation/Broschuere_Internet_der_Energie.pdf},
abstract = {Drei ma\ssgebliche Einflussfaktoren wirken derzeit auf die
Energiewirtschaft ein und erfordern den Umbau in ein intelligentes und effizientes
Versorgungssystem, das deutlich st\"{a}rker als bisher durch Informations- und
Kommunikationstechnologien (IKT) vernetzt sein muss. 



Der erste Faktor ist die versch\"{a}rfte Knappheitssituation: Die Vorr\"{a}te
fossiler Energierohstoffe sind endlich und erleben deswegen schon heute starke
Preissteigerungen; auch die Kapazit\"{a}t, bis zu der die Atmosph\"{a}re CO2
aufnehmen kann, ohne dass ein Klimadesaster droht, ist ausgereizt und
begr\"{u}ndet erhebliche Anstrengungen in einen aktiven Klimaschutz. Um diesen
drohenden Grenzen des

Energiesystems einerseits sowie dem gleichzeitig weltweit steigenden Energiebedarf
andererseits zu begegnen, ist eine erheblich verbesserte Effizienz bei der
Energienutzung dringend erforderlich.



Zweitens stellt das ver\"{a}nderte regulatorische Umfeld erh\"{o}hte Anforderungen
an die datentechnische Vernetzung des Energiesystems. Durch die Entkopplung
von Stromerzeugung, -\"{u}bertragung und -verteilung m\"{u}ssen

unterschiedliche Akteure entlang der Wertsch\"{o}pfungskette \"{u}ber gemeinsame
Schnittstellen miteinander kommunizieren und interagieren. Neue Vorschriften
zur Standardisierung, zum Messwesen und zur Verbrauchstransparenz erzeugen zudem
gro\sse Datenmengen, die in intelligenten automatisierten Prozessen verarbeitet
werden m\"{u}ssen.



Als dritter Faktor schlie\sslich bewirken technische Entwicklungen und steigende
Energiepreise, dass in Zukunft vermehrt Strom aus erneuerbaren Energiequellen
sowohl auf Basis einer verst\"{a}rkt dezentralen als auch aus einer weiterhin
vorhandenen zentralen Versorgungsstruktur in das Stromnetz integriert werden
m\"{u}ssen. Dies erfordert ein wesentlich h\"{o}heres Ma\ss an Flexibilit\"{a}t
im Bereich der Spannungshaltung und der effizienten Lastflusssteuerung als im
derzeitigen System vorgesehen ist.



Diese drei treibenden Faktoren wirken zu einer Zeit, in der ein erheblicher
Investitionsbedarf in das deutsche und europ\"{a}ische Stromversorgungssystem
besteht. Nahezu die H\"{a}lfte der installierten Kraftwerkskapazit\"{a}t in
Deutschland muss in den kommenden Jahren ersetzt oder modernisiert werden, der
massive Ausbau der Stromnetze wird im gleichen Zeitraum ebenfalls erfolgen
m\"{u}ssen. Parallel wird

ein erheblicher Teil der privaten Haushalte renovierungsbed\"{u}rftig. Aufgrund
steigender Energiepreise werden bei den hier anstehenden Instandsetzungsarbeiten
zunehmend neue Energiespartechnologien und kommunikative Endger\"{a}te eingesetzt.



Angesichts dieses Investitionspotenzials besteht die einmalige Chance, einen
\"{U}bergang des derzeitigen Energiesystems hin zu einem Internet der Energie
zu f\"{o}rdern, in dem durch die intelligente Koordination zwischen Erzeugung
und Verbrauch h\"{o}chstm\"{o}gliche Effizienzgewinne bei der Nutzung knapper
Energieressourcen erreicht werden k\"{o}nnen. Die notwendigen Technologien f\"{u}r
die intelligente und effiziente Erneuerung des Energiesystems sind heute
weitestgehend vorhanden. Die Kombination und Integration der verf\"{u}gbaren
Systeme ist jedoch noch weit hinter den M\"{o}glichkeiten zur\"{u}ckgeblieben.
Es bedarf demnach vor allem einer Weichenstellung bei den beteiligten Industrien
und der Politik, die sich auf Handlungsma\ssnahmen und auch auf technische
Standards einigen m\"{u}ssen, um den anstehenden Ver\"{a}nderungsprozess aktiv
und zielgerichtet zu gestalten.



Der Informations- und Kommunikationstechnologie kommt bei der Entwicklung einer
zukunftsf\"{a}higen Energieversorgung eine Schl\"{u}sselrolle zu. Sie ist die
Basis f\"{u}r die Realisierung eines zuk\"{u}nftigen Internets der Energie,
das hei\sst der intelligenten elektronischen Vernetzung aller Komponenten des
Energiesystems. Durch diese verst\"{a}rkte Vernetzung k\"{o}nnen
Erzeugungsanlagen, Netzkomponenten, Verbrauchsger\"{a}te und Nutzer des
Energiesystems untereinander Informationen austauschen und selbstst\"{a}ndig
ihre Prozesse aufeinander abstimmen und optimieren. So entwickelt sich das
bisherige Energienetz mit passiven, informationsarmen Komponenten und einer
\"{u}berwiegenden Einweg-Kommunikation hin zu einem marktorientierten,
dienstebasierten und dezentral organisierten System, in dem interaktive
Optimierungsm\"{o}glichkeiten

und neue Energiedienstleistungen geschaffen werden k\"{o}nnen. Durch einen
verst\"{a}rkten Einsatz von energetisch optimierender Hausautomation und von
Smart Metering haben Privatkunden, \"{o}ffentliche Einrichtungen und auch kleine
und mittlere Unternehmen die M\"{o}glichkeit, ihren Energieverbrauch zu reduzieren
oder zeitlich so zu verschieben, dass Lastspitzen und Engpasssituationen vermieden
werden. Verbesserte Energiemanagementsysteme auf der \"{U}bertragungs- und
Verteilnetzebene erm\"{o}glichen, dass dezentrale Erzeugung und erneuerbare
Energiequellen im gro\ssen Ma\ssstab optimal eingesetzt werden k\"{o}nnen, ohne
dabei die

Systemstabilit\"{a}t und -qualit\"{a}t zu beeintr\"{a}chtigen. Die gr\"{o}\sste
Herausforderung besteht indes darin, eine Integrationsebene zwischen
betriebswirtschaftlichen Anwendungen und dem physikalischen Netz zu schaffen,
welche eine Kommunikation komplexer, \"{u}ber heterogene Netze und Firmengrenzen
hinweg verteilter IT-Komponenten erm\"{o}glicht.



Der \"{U}bergang des derzeitigen Energiesystems hin zu einem Internet der Energie
l\"{a}sst eine Vielzahl m\"{o}glicher neuer Gesch\"{a}ftsmodelle entstehen.
Stromnetzbetreiber k\"{o}nnen sich zuk\"{u}nftig vermehrt zu
Informationsdienstleistern entwickeln; neue Dienstleistungen, wie beispielsweise
das Energiemanagement beim Kunden, werden entstehen. Neue Akteure werden in
den Markt eintreten, zum Beispiel Betreiber von virtuellen
Regelenergiekraftwerken. Durch eine an das Energieangebot angepasste Einbindung
von (hybriden) Elektroautos bietet sich zuk\"{u}nftig auch f\"{u}r den
Transportsektor eine neue M\"{o}glichkeit, aktiv an der Optimierung der
Energienetze mitzuwirken.



Als konkrete Handlungsempfehlungen zur Erschlie\ssung dieser neuen
Gesch\"{a}ftsfelder und zur Verwirklichung eines zukunftsf\"{a}higen intelligenten
Energiesystems werden im Rahmen dieses Papiers Ma\ssnahmen auf mehreren Ebenen
vorgeschlagen. Auf der technischen Ebene muss ein starker Fokus auf der
Koordination der Standardisierung in der Informations-, Kommunikations- und
Energietechnik liegen, die insbesondere eine durchg\"{a}ngige bidirektionale
Kommunikation zwischen Stromerzeugung und Endverbrauchern unterst\"{u}tzt. Neben
der F\"{o}rderung der Grundlagenforschung und Ausbildung in den relevanten
technik- und wirtschaftswissenschaftlichen Disziplinen ist insbesondere auch
die F\"{o}rderung von Initiativen zur angewandten Forschung und zur Pilotierung
des Internets der Energie erforderlich, um Konzepte zu erproben und Erkenntnisse
aus der Forschung in den laufenden Transformationsprozess der Energiewirtschaft
einzubringen. Um sicherzustellen, dass die innovativen Konzepte einer
intelligenten und effizienten Energieversorgung auch tats\"{a}chlich zum Einsatz
kommen, m\"{u}ssen nachhaltige Innovationsanreize insbesondere f\"{u}r
Netzbetreiber geschaffen werden. In diesem Bereich muss die Regulierung
entsprechend gestalterisch eingreifen. Schlie\sslich ist eine geeignete
\"{O}ffentlichkeitsarbeit erforderlich, um alle relevanten Akteure dar\"{u}ber
zu informieren, wie sie zur Umsetzung der Vision des Internets der Energie
beitragen k\"{o}nnen.



Die identifizierten Handlungsempfehlungen k\"{o}nnen wesentlich dazu beitragen,
das heutige Energiesystem zu einer noch effizienteren, zukunftsf\"{a}higen
Energieversorgungsinfrastruktur zu entwickeln und damit die

internationale Spitzenposition deutscher Unternehmen und Forschungseinrichtungen
im Bereich intelligenter und integrierter Energietechnologien zu st\"{a}rken
und auszubauen.}}

					
 
5
van Dinther, C.; Weidlich, A.; Block, C. 2006
Energiemärkte der Zukunft. White Paper. Universität Karlsruhe (TH). Karlsruhe, Germany.
@Techreport{CitationKey,
author = {van Dinther, C. and Weidlich, A. and Block, C.},
title = {{Energiem\"{a}rkte der Zukunft }},
year = {2006},
institution = {Universit\"{a}t Karlsruhe (TH)},
type = {White Paper},
address = {Karlsruhe, Germany}}

					
Betreute Abschlussarbeiten
Development of a Price Elasticity Model for Energy Consumers
in Kooperation mit: Erasmus Research Institute of Management, Erasmus University, Rotterdam
[Diplomarbeit, Masterarbeit]
Status: vergeben
Konzeption und Realisierung mobiler Verbraucher in einer Agenten-basierten Simulation
in Kooperation mit: Siemens AG
[Diplomarbeit, Masterarbeit]
Status: abgeschlossen
Agent-Based Demand Management in Micro Energy Grids
in Cooperation with Concorida University, Montreal, Canada
[Diplomarbeit]
Status: abgeschlossen
Ein Planungsmodell zur optimalen Dimensionierung von Mikroenergienetzen
[Bachelorarbeit, Diplomarbeit]
Status: abgeschlossen
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association